3.402 \(\int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx\)

Optimal. Leaf size=57 \[ \frac {2 \sqrt {a} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d} \]

[Out]

2*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.12, antiderivative size = 57, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {4264, 3801, 215} \[ \frac {2 \sqrt {a} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + a*Sec[c + d*x]]/Sqrt[Cos[c + d*x]],x]

[Out]

(2*Sqrt[a]*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/d

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3801

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*a*Sq
rt[(a*d)/b])/(b*f), Subst[Int[1/Sqrt[1 + x^2/a], x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[(a*d)/b, 0]

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {\cos (c+d x)}} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx\\ &=-\frac {\left (2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}\\ &=\frac {2 \sqrt {a} \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 74, normalized size = 1.30 \[ -\frac {2 \sqrt {\cos (c+d x)} \tan \left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \sqrt {a (\sec (c+d x)+1)} \sin ^{-1}\left (\sqrt {\sec (c+d x)}\right )}{d \sqrt {1-\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + a*Sec[c + d*x]]/Sqrt[Cos[c + d*x]],x]

[Out]

(-2*ArcSin[Sqrt[Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/
2])/(d*Sqrt[1 - Sec[c + d*x]])

________________________________________________________________________________________

fricas [A]  time = 0.73, size = 180, normalized size = 3.16 \[ \left [\frac {\sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 4 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} {\left (\cos \left (d x + c\right ) - 2\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right )^{2} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right )}{2 \, d}, \frac {\sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right )}{d}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/2*sqrt(a)*log((a*cos(d*x + c)^3 - 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)*sqrt
(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2))/d, sqrt(-a)*arctan(
2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d
*x + c) - 2*a))/d]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a \sec \left (d x + c\right ) + a}}{\sqrt {\cos \left (d x + c\right )}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

maple [B]  time = 1.03, size = 142, normalized size = 2.49 \[ \frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (\sqrt {\cos }\left (d x +c \right )\right ) \left (\arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right )-\arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1-\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )-1\right ) \sqrt {2}}{2 d \sin \left (d x +c \right )^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x)

[Out]

1/2/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*cos(d*x+c)^(1/2)*(arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1
+sin(d*x+c))*2^(1/2))-arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1-sin(d*x+c))*2^(1/2)))*(-2/(1+cos(d*x+
c)))^(1/2)/sin(d*x+c)^2*(cos(d*x+c)^2-1)*2^(1/2)

________________________________________________________________________________________

maxima [B]  time = 1.55, size = 241, normalized size = 4.23 \[ \frac {\sqrt {a} {\left (\log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) - \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) + \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right ) - \log \left (2 \, \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sqrt {2} \cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, \sqrt {2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2\right )\right )}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(1/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/2*sqrt(a)*(log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt
(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*
x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2
*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2
*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a/cos(c + d*x))^(1/2)/cos(c + d*x)^(1/2),x)

[Out]

int((a + a/cos(c + d*x))^(1/2)/cos(c + d*x)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(1/2)/cos(d*x+c)**(1/2),x)

[Out]

Integral(sqrt(a*(sec(c + d*x) + 1))/sqrt(cos(c + d*x)), x)

________________________________________________________________________________________